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4 A sum rule for elastic scattering
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A sum rule is derived for elastic scattering of hadrons at high energies
which is in good agreement with experimental data on pp̄ available upto
the maximum energy

√
s = 2TeV . Physically, our sum rule reflects the

way unitarity correlates and limits how large the elastic amplitude can
be as a function of energy to how fast it decreases as a function of the
momentum transfer. The universality of our result is justified through our
earlier result on equipartition of quark and glue momenta obtained from
the virial theorem for massless quarks and the Wilson conjecture

PACS numbers: PACS numbers come here

1. Introduction

Consider the elastic scattering of two hadrons (A and B) with the fol-
lowing kinematics

A(pa) + B(pb) → A(pc) + B(pd)

with
s = (pa + pb)

2 = (pc + pd)
2;

t = (pa − pc)
2 = (−pb + pd)

2 = −~q 2;

(1)
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u = (pa − pd)
2 = (pc − pb)

2, (1.1)

and let us normalize the elastic amplitude F (s, t) so that the elastic dif-
ferential cross-section and the total cross-section (for high energies) read
as

(
dσ

dt
) = π|F (s, t)|2; σTOT (s) = 4πℑmF (s, t = 0). (1.2)

In the impact parameter representation

F (s, t) = i

∫

∞

o
(bdb)Jo(b

√
−t)F̃ (s, b), (1.3)

and the partial b-wave amplitude is given by

F̃ (s, b) = 1 − η(s, b)e2iδ(s,b), (1, 4)

where the inelasticity factor η lies between (0 ≤ η(s, b) ≤ 1) and δ(s, b)
is the real part of the phase shift. Directly measureable quantities are (a)
|F (s, t)| through (dσ

dt ) and (b) ℑmF (s, 0) through σTOT . In the next section
2, we shall obtain lower and upper bounds for a dimensionless quantity Io(s)
constructed by integrating |F (s, t)| over all momentum transfers t. Under
rather mild assumptions, at high energies (s → ∞) it is sharpened into a
sum rule

Io(s) = (1/2)

∫

∞

o
(dt)

√

dσ

πdt
=

∫

∞

o
(qdq)|F (s, q)| → 1. (1.5)

In sec 3, we compare these predictions with the experimental data and find
that already at the Tevatron

√
s = 2 TeV , the integral has the value

0.98 ± 0.03 very close to its asymptotic limit 1. Our extrapolation for LHC
gives 0.99 ± 0.03. Also, a brief discussion of the assumptions and an esti-
mate of the elastic cross-section is presented here. In sec. IV, we present
arguments based on an equipartition of energy between quark and glue de-
rived earlier, for the universality of the above result for all hadrons made
of light quarks. In the concluding section, we consider future prospects and
possible applications.

2. Lower and upper bounds and the elastic sum rule

The dimensionless b-wave cross sections are

d2σel

d2b
= 1 − 2η(s, b)cos2δ(s, b) + η2(s, b), (2.1a)

d2σinel

d2b
= 1 − η2(s, b), (2.1b)
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d2σtot

d2b
= 2[1 − η(s, b)cos2δ(s, b)]. (2.1c)

The maximum permissible rise for the different cross sections allowed by
unitarity [1, 2, 3, 4] is when there is total absorption of “low” partial waves,
i.e., when

η(s, b) → 0, as b → 0 and s → ∞, (2.2)

and the “geometric” limit is reached

d2σel

d2b
=

d2σinel

d2b
= (1/2)

d2σtot

d2b
→ 1 (b → 0; s → ∞). (2.3)

Most models with rising total cross-sections satisfy the above[5, 6, 7, 8, 9,
10]. Often times, one defines η(s, b) = e−n(s,b)/2 and n(s, b) is interpreted
as the number of collisions at a given impact parameter b and energy

√
s.

Now let us consider bounds for the dimensionless integral Io(s) defined
in Eq.(1.5). The lower bound is easily obtained

Io(s) ≥
∫

∞

o
(qdq)|ℑmF (s, q)| ≥

∫

∞

o
(qdq)ℑmF (s, q), (2.4a)

which upon using Eq.(1.3) leads to

Io(s) ≥
∫

(qdq)

∫

(bdb)Jo(qb)[1 − η(s, b)cos2δ(s, b)], (2.4b)

so that we have finally

Io(s) ≥ 1 − η(s, 0)cos2δ(s, 0) ≥ 1 − η(s, 0). (2.4c)

The upper bound requires more input[23]. If we assume (an ugly technical
assumption) that sin2δ(s, b) does not change sign (to leading order in s),
then one has the following upper and lower bounds

(1 +
K

ln(s/so)
) ≥ Io(s) ≥ 1 − η(s, 0), (K > 0). (2.5)

These bounds have been obtained incorporating (i) unitarity, (ii) positivity,
(iii) correct behavior near b = 0 and (iv) the asymptotic behavior for
b → ∞.

Some useful remarks: (1) For hadrons (not quarks and glue), the lowest
hadronic state has a finite mass (mπ > 0), hence there is a finite range of
interaction. Thus, in the limit of both b and s going to ∞, we have

1 − η(s, b)cos2δ(s, b) → 0; η(s, b)sin2δ(s, b) → 0, (2.6)
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faster than an exponential in b. (2) The higher moments

In(s) =

∫

(dt)(−t)n|F (s, t)|, (n = 1, 2, ...), (2.7)

are dimensional and go to zero in the asymptotic limit. Thus, they are less
useful than the zeroeth moment.

From Eq.(2.5), we obtain the sum rule as s → ∞

Io(s) → 1, as s → ∞. (2.8)

3. Comparison of the sum rule with experimental data

The integral I0(s) should rise from its threshold value 2|a0|k → 0,
where a0 is the S-wave scattering length (complex for pp̄) and k is the CM
3-momentum, to its asymptotic value 1 as s goes to infinity. In Fig.(1), we
show a plot of this integral for available data [11, 12, 13, 14, 15, 16, 17, 18]
on pp and pp̄ elastic scattering for high energies [19]. Highest energy data at√

s = 1.8 TeV for pp̄ from the Fermilab Tevatron [11], give an encouraging
value of 0.98 ± 0.03 demonstrating that indeed the integral is close to its
asymptotic value of 1. We expect it to be even closer to 1 at the LHC (our
extrapolation gives the value 0.99 ± 0.03 for LHC).

4. Universality of the sum rule

It can be shown that the central value of the inelasticity η(s, 0) → 0 at
asymptotic energies s → ∞ for all hadrons made of light quarks. Hence,
we have the universal result[23] that IAB(s) → 1 as s → ∞, where A,B
are either nucleons or mesons made of light quarks. The reasons are as
follows:
(i) For nucleons as well as light mesons, half the hadronic energy is carried
by glue. In QCD such an equipartition of energy is rigorously true[20, 24]
for hadrons made of massless quarks if the Wilson area law holds.
(ii) If we couple (i) to the notion that the rise of the cross-section is through
the gluonic channel, which is flavour independent, the asynptotic equality
of the rise in all hadronic cross-section automatically emerges.

5. conclusions

Our (dimensionless) sum rule reflects the fact that unitarity strongly
correlates the fall off in the momentum transfer to the magnitude of the
scattering amplitude at high energies. Its satisfaction by experimental data
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Fig. 1. A plot of I0(s) vs.
√

s using experimental data [11, 12, 13, 14, 15, 16, 17, 18].

The last point is our extrapolation for LHC.

at the highest energy confirms our initial hypotehsis that the rise in the
total cross-section as a function of the energy is indeed proportional to the
fall off in the momentum transfer. As a by product, we find that the ratio
σel

σtot
→ (1/4), which is again in very good agreement with data at the

highest Tevatron energy
√

s = 2 TeV .

We also find universality. That is, asymptotically, IAB → 1 for any
hadrons A,B made of light quarks. These may be testable at future LHC
and RHIC measurements with heavy ions (or by other means [21].

Currently, we are extending similar considerations for one particle in-
clusive cross-sections.
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